If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10=2
We move all terms to the left:
2x^2-10-(2)=0
We add all the numbers together, and all the variables
2x^2-12=0
a = 2; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·2·(-12)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*2}=\frac{0-4\sqrt{6}}{4} =-\frac{4\sqrt{6}}{4} =-\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*2}=\frac{0+4\sqrt{6}}{4} =\frac{4\sqrt{6}}{4} =\sqrt{6} $
| -3-4=-2(x+3) | | 90+(2x+30)+(5x-17)=180 | | 2x+3=19;x= | | 7x+42=19+30 | | (5x+2)+(6x+4)+(12x-4)=180 | | x+x-15+(2x-15)/2=180 | | 30/c+9=15 | | 0.5=x/16 | | 4(d-5)+5d=13 | | 12=k/6 | | 90+(2x+20)+(5x-17)=180 | | 22=t^2-9t | | 16x^2+40+25=3x+17 | | 14x-90=5x | | 10+24/x=13 | | 5/18x=1/2 | | |7x+5|=16 | | 4(6r+3)+2(r+2)=0 | | 1/2m+6=-10 | | 3x/4-3=2-7x/8 | | 7-0.8x=7 | | 2a+2=4a+1 | | -81/z-(10)=1 | | 7x-32x=-38 | | (13x)+(16x)+(16x)=180 | | 3b+b(-4)=-16 | | 45+2x+15=180 | | 3(x-5)=-2(x+5) | | 5x+2-4=2x+4x-8 | | p÷1/2=6 | | (16x)+(16x)+(13x)=180 | | 13/8x-5=0 |